Extreme Positioning for Billions of "Things"

Fadel Adib

Extreme Positioning for Billions of "Things"

Where are my keys?

Robotic Manipulation Medicine Adherence

Battery-Free UHF RFID Stickers

Each sticker costs few cents

Battery-Free UHF RFID Stickers

Each sticker costs few cents

Reply to wireless reader with a unique identifier

This Talk: Enabling wide-area high-accuracy localization for billions of deployed RFID

This Talk: Enabling wide-area high-accuracy localization for billions of deployed RFID

Objects inside the box are tagged with RFIDs

Board eraser

screwdriver

computer mouse

This Talk: Enabling wide-area high-accuracy localization for billions of deployed RFID

Objects inside the box are tagged with RFIDs

This Talk: Enabling wide-area high-accuracy localization for billions of deployed RFID

Objects inside the box are tagged with RFIDs

Two Fundamental Challenges

Limited Bandwidth

Ultra-Low Power

Tens of kHz bandwidth → poor localization accuracy

Battery-free nature →
Tens of cm to few meters range

RFind

Ultra-wideband emulation enables sub-cm localization [MobiCom '17]

RFly

Drone-based relay increases coverage by 100x
[SIGCOMM '17]

Ultra-wideband emulation enables sub-cm localization

[MobiCom '17]

Localize by Measuring Distances

Measuring Time-of-Flight

Option1: Transmit short pulse and listen for RFID response

Problem: RFID does not respond!

Problem: Battery-free UHF RFIDs are designed to respond to a reader's narrowband query signal

Problem: Battery-free UHF RFIDs are designed to respond to a reader's narrowband query signal

Key Realization: RFID Modulation is Frequency Agnostic

Simplified RFID schematic

Key Realization: RFID Modulation is Frequency Agnostic

Key Realization: RFID Modulation is Frequency Agnostic

But we need to power up RFID in the first place

Dual-Frequency Excitation a technique that decouples powering up from sensing in RFID localization

Dual-Frequency Excitation

Dual-Frequency Excitation

Wide Bandwidth → Time-of-flight → Accurate Localization

How can we perform wideband sensing despite FCC regulations?

How can we perform wideband sensing despite FCC regulations?

Additional techniques to address multipath and achieve super-resolution accuracy

How much bandwidth can RFind emulate?

Accuracy vs. Bandwidth

At What Speed Can We Track?

Two Fundamental Challenges

Limited Bandwidth

Tens of kHz bandwidth → poor localization accuracy

RFind

Ultra-wideband emulation enables sub-cm localization [MobiCom '17]

Ultra-Low Power

Battery-free nature →
Tens of cm to few meters range

RFly

Drone-based relay increases coverage by 100x
[SIGCOMM '17]

Two Fundamental Challenges

Limited Bandwidth

Ultra-Low Power

Tens of kHz bandwidth → poor localization accuracy

Battery-free nature →
Tens of cm to few meters range

RFind

Ultra-wideband emulation enables sub-cm localization [MobiCom '17]

RFIy

Drone-based relay increases coverage by 100x
[SIGCOMM '17]

Drone-based relay increases coverage by 100x

[SIGCOMM '17]

Warehouse Management

Battery-Free RFIDs for Inventory Control

Read and uniquely identify it from a distance

Battery-free RFIDs are fundamentally crippled by their limited communication range

Warehouse-scale RFID inventory control and positioning using drone relays

How Can We Design Relays for Localization?

Range extension requires amplifying the relayed signal

How Can We Design Relays for Localization?

Range extension requires amplifying the relayed signal

Problem: More amplification results in more selfinterference

Four sources of self-interference

Solution: Bi-directional full-duplex relay with phase & timing preservation

- Analog self-interference cancellation
 - 10 million times amplification (70dB)
- Highly accurate timing
 - Pico-second (10-12) timing precision
- · Small form factor & light weight

• Size: 10 x 7.5 cm

• Weight: 35 g

- Low Power
 - Consumes <3% drone's battery

How much can RFly extend reading range?

How much can RFIy extend reading range?

Two Fundamental Challenges

Limited Bandwidth

Tens of kHz bandwidth → poor localization accuracy

RFind

Ultra-wideband emulation enables sub-cm localization [MobiCom '17]

Ultra-Low Power

Battery-free nature →
Tens of cm to few meters range

RFly

Drone-based relay increases coverage by 100x
[SIGCOMM '17]

RFind [MobiCom '17]

RFIy [SIGCOMM '17]

- First technology that enables emulating ultra wide bandwidth on billions of deployed RFIDs
- Achieves sub-centimeter localization accuracy
- First systems that leverages drones as relays for battery-free systems
- Extends communication area by 100x with accurate localization

Can we sense humans without RFIDs?

using wireless reflections off their bodies

[SIGCOMM '13, NSDI '14, NSDI '15, SIGGRAPH '15, CHI '15, MobiCom '16]

Extreme Positioning for Billions of "Things"

